Large-Scale Coherence in Bacterial Dynamics

Raymond E. Goldstein
Department of Physics and Program in Applied Mathematics
University of Arizona
Tucson, AZ 85721

In many biological contexts, and particularly in bacterial systems, the processes of intercellular communication, chemotaxis, and metabolite uptake take place in a fluid environment in which dissipation dominates inertia, and diffusion would appear to dominate advection. Indeed, on the few-micron scale ℓ of an individual bacterium, at typical fluid velocities u achieved by self-propulsion, the Peclet number $Pe = u\ell/D \ll 1$. Yet, recent theoretical and experimental studies have shown that large-scale cooperative behavior can drastically modify this picture. This involves coherent swimming (left figure) at high volume fractions, with transient, recurring vortex streets straddling high-speed jets and greatly enhanced velocities and scales (right) so that $Pe \gg 1$. These and earlier observations involving anomalous diffusion of passive scalars in dense suspensions help define a whole set of challenging problems at the interface of physics and biology:

- How do we construct a many-body dynamical theory (coarse-grained) for a suspension of hydrodynamically-interacting cells, each with stochastic internal dynamics, responding to and secreting chemical signals?
- What are the proper experimental model systems and measurements to quantify such collective behavior?
- What are the implications for biological processes, including micro-ecology, quorum sensing, and biofilm formation?